Effect of Synthesis Method of La1 − xSrxMnO3 Manganite Nanoparticles on Their Properties

نویسندگان

  • Yulia Shlapa
  • Sergii Solopan
  • Anatolii Belous
  • Alexandr Tovstolytkin
چکیده

Nanoparticles of lanthanum-strontium manganite were synthesized via different methods, namely, sol-gel method, precipitation from non-aqueous solution, and precipitation from reversal microemulsions. It was shown that the use of organic compounds and non-aqueous media allowed significantly decreasing of the crystallization temperature of nanoparticles, and the single-phased crystalline product was formed in one stage. Morphology and properties of nanoparticles depended on the method and conditions of the synthesis. The heating efficiency directly depended on the change in the magnetic parameters of nanoparticles, especially on the magnetization. Performed studies showed that each of these methods of synthesis can be used to obtain weakly agglomerated manganite nanoparticles; however, particles synthesized via sol-gel method are more promising for use as hyperthermia inducers.PACS: 61.46.Df 75.75.Cd 81.20. Fw.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Grinding Time on Structural and Thermal Properties of Strontium-Doped Nanostructural Lanthanum

In this work, the strontium-doped lanthanum manganite- a ceramic material- used as cathode in solid oxide fuel cells. An impression of grinding time on the structural and thermal properties of Sr-doped LaMnO3 system with La1-xSrxMnO3 (x=0.2) stoichiometric ratio was investigated. The nano crystallite LSM powder with cubic structure was prepared by varying the milling time of planetary monomill ...

متن کامل

Field Effect and Magnetically Induced Capacitive Tuning in Hole Doped La1-xSrxMnO3

Electrostatic modulation of interface conduction between semiconductors and insulating oxides is the foundation of semiconductor technology. This field effect concept can be applied on complex oxides, such as high temperature superconductors and colossal magnetoresistive manganites, in order to create new electronic and magnetic phases. Competition and coexistence of multiple nanoscale phases m...

متن کامل

Mechanical Characterization of (La,Sr)MnO3 Microbridges for Thermometric Applications

MicroElectroMechanical Systems (MEMS) made of heterostructures of crystalline oxide materials with targeted physical properties may be applied as sensors having different integrated functionalities. In this work, we explore the feasibility of manganite thin film based epitaxial MEMS for thermometric micromechanical sensing. We investigate the mechanical properties of La1−xSrxMnO3, with x ≈ 1/3,...

متن کامل

Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3 (x= 0.3 – 0.4) with core and valence level photoemission (PE), x-ray absorption specroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscop...

متن کامل

Effect of Sr substitution on structural, redox and catalytic properties of nano-particles La1-xSrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) as a catalyst for CO oxidation

Structural features of La(1-x)SrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nano-particles were investigated using X-ray powder diffraction and FT-IR spectroscopy. The characterization of compounds by X-ray powder diffraction and using Fullprof program show a cubic structure (Pm3m space group) for x = 0.0 and a rhombohedra structure (R-3c space group) for the Sr substituted La(1-x)SrxM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018